Doc No. X3J16-92-118 WG21-N0195

Clarifications on Relaxation of Return Types of Virtuals.

John Bruns
11/02/92

The original decision extended the language to allow virtual functions to
differ in return types. The intent was to provide support for polymorphic
behavior, that is when the new return type was indeed a pointer to the same
object, but eliminate the loss of static type information.

The restricitions on this relaxation were:

1) The return types must be either pointers to objects or references
to objects.

2) The original return type must be an accessible base class (pointer
or reference) of the original return type.

This was the intent of the proposal and the wording was left to the
editor to include in the draft document with the best possible wording.

Since then a number of questions have come up considering potential
extensions to this rule.

1) Private inheritance.

<onsider the case:

class A {
public:

virtual A * £(); -
}

class B : private A {
public:

virtual B * f(); // should this be legal?
}

The issue is that a B * cannot be automatically converted to an A *

when the inheritance is private except within the members of B.

This conversion needs to take place whenever we call f() on a B (or derived
subclass of B) object in an the context of an A * or A &. In this case the
class B is responsible for the redefinition and & is an accessible base
class, therefore the cast from B * to A * is legal.

Loy
Now consider the classes above together with:

class C {
public:

virtual A * g{();
}
class D : public C {
public:

virtual B * f(); // should this be legal?
}

In this case class D is the one attempting to redefine (cast) the

return type for classes related by private inheritance. Unlike the
case above, D cannot legally cast a B * into an A *. This should
be caught and flagged as a protection error.

2) Const (and Volatile) returns:

class A {
public:
virtual const A * f();
}
class B : public A {
public:
} virtual A * f(); // should this be legal?

In this case it is trivial to convert the A * (or a B *) into an

const A * (or volatile A *). This should obviously be allowed. The
reverse, redefining a unrestrained pointer into a const pointer is not type
safe and illegal.

3) Const pointers.

Consider the case:

class A {

public:
. __virtual A * const £();
} , .
class B : public A {
public:
virtual B * f£(); // should this be legal?
}
class C : public B {
public:
virtual ¢ * const f(); // what about this??
}
In general (X * const p) tells the compiler that the pointer

itself cannot be changed but X itself can be, as opposed to (const
X * p) where X is constant but p could be changed. Since this is
irrelevant in the return type of a function (which itself is never
an L-Value), all the above are legal but useless.

Unless I'm missing something, aren’t all function returns implicitly
const in this sense??

4) Override Derived (not just Derived * or Derived &).

This was discussed in detail at the London meeting and was rejected.

It was considered both technically more difficult to implement and
semantically unsafe. 1In particular, it would cause truncation of types
when used in a base class context. It was considered that this caused
enough trouble with the assignment operator and we shouldn’'t open another
loophole.

5) User defined conversions.
This was also discussed and rejected. It was thought that this was both

more difficult and opened up the possiblity of strange and unexpected
behavior. The intent of the original proposal was to support

polymorphism and rectify a shortcoming in the type system, not to support
new language features.

"ONCLUSION

The original accepted proposal to allow redifinition of return types of
virtual functions already covers the cases of private inheritance and
const or volatile retuurn types. The issues of overiding actual derived
objects and user defined conversions was rejected by the working group
and should not be re-opened without significant new evidence supporting
them.

